Conclusion/Questions

Cage-based deformations for implicit surfaces

Kevin Trancho* Master 2 student in Computer sciences

at University Paris-Est Marne-Ia-Vallée in Internship supervised by Loïc Barthe[†] and Pascal Romon[‡]

June <mark>21, 20</mark>19

Cages	Inverse position problem	Our methods	Future work	Conclusion/Questions

Topics of the presentation :

- Introduction to cage-based deformations.
 - Cages and interest as deformation.
 - Generalized barycentric coordinates in cages for deformation.
- How to deform an implicit surface with a cage.
 - Inverse position problem.
 - State of the art : Free-Form Deformations special type of cages and implicit surface deformation.
 - Our methods and flexible solving architecture.
- Future work and interest for Implicit skinning.

Cages ●000	Inverse position problem	Our methods	Future work 0000	Conclusion/Questions	
Introduction to cages					

- Bounding simplification of a discrete surface.
- Define control positions.
- Allow smooth deformations of the surface.

Cages ●000	Inverse position problem	Our methods	Future work 0000	Conclusion/Questions	
Introduction to cages					

- Bounding simplification of a discrete surface.
- Define control positions.
- Allow smooth deformations of the surface.

Cages ●000	Inverse position problem	Our methods	Future work	Conclusion/Questions
Introduction	n to cages			

- Bounding simplification of a discrete surface.
- Define control positions.
- Allow smooth deformations of the surface.

Cages ○●○○	Inverse position problem	Our methods	Future work 0000	Conclusion/Questions
Introductio	n to cages			

Cage interest for animation

- Tool artists are familiar with.
- Allow smooth inside the cage and free deformations from control positions.
- Can be plug with a chosen barycentric coordinates system.
- Global space deformation.

(a) Bind pose

(b) Mean Value Coordinates

(c) Green Coordinates

Cage-based deformations for implicit surfaces

Our methods

Future work

Conclusion/Questions

Introduction to barycentric coordinates

Barycentric coordinates and affine transform

 $P = \alpha A + \beta B + \gamma C \qquad Q = T(P) = T(\alpha A + \beta B + \gamma C)$ $\alpha + \beta + \gamma = 1 \qquad Q = \alpha T(A) + \beta T(B) + \gamma T(C)$ $\Rightarrow \alpha \vec{PA} + \beta \vec{PB} + \gamma \vec{PC} = 0 \qquad Q = \alpha A' + \beta B' + \gamma C'$

Our methods

Future work

Conclusion/Questions

Introduction to barycentric coordinates

Barycentric coordinates and affine transform

 $P = \alpha A + \beta B + \gamma C \qquad Q = T(P) = T(\alpha A + \beta B + \gamma C)$ $\alpha + \beta + \gamma = 1 \qquad Q = \alpha T(A) + \beta T(B) + \gamma T(C)$ $\Rightarrow \alpha \vec{PA} + \beta \vec{PB} + \gamma \vec{PC} = 0 \qquad Q = \alpha A' + \beta B' + \gamma C'$

Our methods

Future work

Conclusion/Questions

Introduction to barycentric coordinates

Barycentric coordinates and affine transform

 $\begin{array}{ll} P = \alpha A + \beta B + \gamma C & Q = T(P) = T(\alpha A + \beta B + \gamma C) \\ \alpha + \beta + \gamma = 1 & Q = \alpha T(A) + \beta T(B) + \gamma T(C) \\ \Rightarrow \alpha \vec{PA} + \beta \vec{PB} + \gamma \vec{PC} = 0 & Q = \alpha A' + \beta B' + \gamma C' \end{array}$

Our methods

Future work

Conclusion/Questions

Introduction to barycentric coordinates

Barycentric coordinates and affine transform

 $\begin{array}{ll} P = \alpha A + \beta B + \gamma C & Q = T(P) = T(\alpha A + \beta B + \gamma C) \\ \alpha + \beta + \gamma = 1 & Q = \alpha T(A) + \beta T(B) + \gamma T(C) \\ \Rightarrow \alpha \vec{PA} + \beta \vec{PB} + \gamma \vec{PC} = 0 & Q = \alpha A' + \beta B' + \gamma C' \end{array}$

Cages	Inverse position problem	Our methods	Future work	Conclusion/Questions
0000				

Introduction to barycentric coordinates

Generalized barycentric coordinates to cages

 $P = \sum_{i \in [n]} \alpha_i(P)C_i$ $\sum_{i \in [n]} \alpha_i(P) = 1$ Binding step : compute weights $(\alpha_i(P))_{i \in [n]}$

$$Q = T(P) = T(\sum_{i \in [n]} \alpha_i(P)C_i)$$
$$Q = \sum_{i \in [n]} \alpha_i(P)T(C_i)$$
$$Q = \sum_{i \in [n]} \alpha_i(P)D_i$$

Cages	Inverse po	sition pr	oblem	Our methods	Future work	Conclusion/Questions
0000						

Introduction to barycentric coordinates

Generalized barycentric coordinates to cages

$$\begin{split} P &= \sum_{i \in [n]} \alpha_i(P) C_i & Q &= T(P) = T(\sum_{i \in [n]} \alpha_i(P) \\ &\sum_{i \in [n]} \alpha_i(P) = 1 & Q &= \sum_{i \in [n]} \alpha_i(P) T(C_i) \\ &\text{Binding step :} & Q &= \sum_{i \in [n]} \alpha_i(P) D_i \\ &\text{compute weights } (\alpha_i(P))_{i \in [n]} & Q &= \sum_{i \in [n]} \alpha_i(P) D_i \end{split}$$

Cages	Inverse position problem	Our methods	Future work	Conclusion/Questions
0000				

Introduction to barycentric coordinates

Generalized barycentric coordinates to cages

$$\begin{split} P &= \sum_{i \in [n]} \alpha_i(P) C_i & Q &= T(P) = T(\sum_{i \in [n]} \alpha_i(P) C_i) \\ \sum_{i \in [n]} \alpha_i(P) &= 1 & Q &= \sum_{i \in [n]} \alpha_i(P) T(C_i) \\ \textbf{Binding step :} & Q &= \sum_{i \in [n]} \alpha_i(P) D_i \\ \textbf{compute weights } (\alpha_i(P))_{i \in [n]} & Q &= \sum_{i \in [n]} \alpha_i(P) D_i \end{split}$$

Inverse position problem

Inverse position problem

Inverse position problem

Inverse position problem

 $\begin{array}{l} g(Q) = f(P) \\ g(Q) = f(T^{-1}(Q)) \\ Q = \sum\limits_{i \in [n]} \alpha_i(P) D_i \end{array}$

$$\begin{split} Q &= \sum_{i \in [n]} \alpha_i(P)(C_i + \vec{u_i}) \\ Q &= P + \sum_{i \in [n]} \alpha_i(P)\vec{u_i} \\ \mathbf{P} &= Q - \sum_{i \in [n]} \alpha_i(\mathbf{P})\vec{u_i} \\ \left\{ \overrightarrow{C_1C_i} \right\}_{i \in [n] \setminus \{1\}} \text{ linearly dependent }. \end{split}$$

Kevin Trancho

Cages 0000	Inverse position problem ○●○○	Our methods	Future work 0000	Conclusion/Questions
State of the	art			

Free-Form-Deformations

 $\begin{array}{l} (s,t) \text{ coordinates in } (P_{1,1},\overrightarrow{P_{1,1}P_{l,1}},\overrightarrow{P_{1,1}P_{1,m}}).\\ P_{i,j} \text{ and } Q_{i,j} \text{ bilinear interpolation of the parallelepipeds.}\\ T(s,t) = \sum_{(i,j)\in[l]\times[m]} \binom{l}{i}\binom{m}{j}s^i \,(1-s)^{l-i}\,t^j \,(1-t)^{m-j}\,T(P_{i,j}) \end{array}$

Cages	Inverse position problem	Our methods	Future work	Conclus
	0000			

State of the art

Free-Form-Deformations and inverse problem solving

Get nearest $P_{i,j}$. Solve T(s,t) - Q = 0using Newton method.

$$J_T(s,t) = \left(\frac{\partial}{\partial s}T(s,t), \frac{\partial}{\partial t}T(s,t)\right)$$
$$X_0 = \left(\frac{i}{l}, \frac{j}{m}\right)$$
$$X_{n+1} = X_n - J_T^{-1}(X_n)\left(T(X_n) - Q\right)$$

Cages 0000	Inverse position problem ○○●○	Our methods	Future work	Conclusion/Questions
C				

Free-Form-Deformations and inverse problem solving

Get nearest $P_{i,j}$. Solve T(s,t) - Q = 0 using Newton method.

$$J_T(s,t) = \left(\frac{\partial}{\partial s}T(s,t), \frac{\partial}{\partial t}T(s,t)\right)$$
$$X_0 = \left(\frac{i}{l}, \frac{j}{m}\right)$$
$$X_{n+1} = X_n - J_T^{-1}(X_n)\left(T(X_n) - Q\right)$$

Cages	Inverse position problem	Our methods	Future work	Conclusion/Questions
C				

Free-Form-Deformations and inverse problem solving

Get nearest $P_{i,j}$. Solve T(s,t) - Q = 0using Newton method.

$$J_T(s,t) = \left(\frac{\partial}{\partial s}T(s,t), \frac{\partial}{\partial t}T(s,t)\right)$$
$$X_0 = \left(\frac{i}{l}, \frac{j}{m}\right)$$
$$X_{n+1} = X_n - J_T^{-1}(X_n)\left(T(X_n) - Q\right)$$

Kevin Trancho

Cage-based deformations for implicit surfaces

Cages	Inverse	position	problem	
	0000			

Future work

Conclusion/Questions

State of the art

Free-Form-Deformations implicit surface example in 2D

Example in 2D (render done in java using Processing IDE).

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 10 / 39

ages	Inverse	position	problem	Ourm
				0000

Future work

Conclusion/Questions

Overview

Our general architecture for inverse position solving

Cages	Inverse position problem	Our methods
		000000000000000000000000000000000000000

Future work

Conclusion/Questions

First method (Cartesian-Newton)

State of the art inspired idea : architecture

Kevin Trancho

Cage-based deformations for implicit surfaces

Cages	Inverse	position	problem

Future work

Conclusion/Questions

First method (Cartesian-Newton)

State of the art inspired idea : method

Solve T(P) - Q = 0: $J_T(x, y) = \left(\frac{\partial}{\partial x}T(x, y), \frac{\partial}{\partial y}T(x, y)\right)$ P_0 nearest sample. $P_{n+1} = P_n - J_T^{-1}(P_n) (T(P_n) - Q)$

Cages	Inverse	position	problem

Future work

Conclusion/Questions

First method (Cartesian-Newton)

State of the art inspired idea : method

Solve T(P) - Q = 0: $J_T(x, y) = \left(\frac{\partial}{\partial x}T(x, y), \frac{\partial}{\partial y}T(x, y)\right)$ P_0 nearest sample. $P_{n+1} = P_n - J_T^{-1}(P_n) (T(P_n) - Q)$

Cages	Inverse	position	problem

Future work

Conclusion/Questions

First method (Cartesian-Newton)

State of the art inspired idea : result in 2D

Example in 2D (render done in java using Processing IDE).

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 14 / 39

Our methods

Future work

Conclusion/Questions

First method (Cartesian-Newton)

State of the art inspired idea : examples in 2D

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 15 / 39

Our methods

Future work

Conclusion/Questions

First method (Cartesian-Newton)

State of the art inspired idea : result in 3D

Example in 3D (render done in C++ using Radium Engine).

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 16 / 39

Cages 0000	Inverse	position	problem	0 i
First method	d (Carte	sian-Nev	vton)	

Future work

State of the art inspired : benchmark marching cubes

Implicit blob sphere deformed by cage (12 vertices, 20 faces) :

Kd-tree and sampling update time : $2.4 \cdot 10^6 ns(2.4ms)$ in average.

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 17 / 39

Cages 0000	Inverse position problem	Our methods 000000000000000000000000000000000000	Future work 0000	Conclusion/Questions
First metho	d (Cartesian-Newton)			

State of the art inspired : benchmark display planes

Implicit blob sphere deformed by cage (12 vertices, 20 faces) :

Kd-tree and sampling update time : $2.4 \cdot 10^6 ns(2.4ms)$ in average.

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 18 / 39

Cages	Inverse	position	problem

Future work

Conclusion/Questions

First method (Cartesian-Newton)

State of the art inspired idea : method

Solve T(P) - Q = 0: $J_T(x, y) = \left(\frac{\partial}{\partial x}T(x, y), \frac{\partial}{\partial y}T(x, y)\right)$ P_0 nearest sample. $P_{n+1} = P_n - J_T^{-1}(P_n) (T(P_n) - Q)$
 Cages
 Inverse position problem
 Our methods
 Future work
 Conclusion/Questions

 0000
 0000
 00000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000

Bounding grid sampling and trilinear approximation by nearest neighbor detect cross and dot product method

Bounding grid and trilinear approximation : architecture

Kevin Trancho

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by nearest neighbor detect cross and dot product method

Bounding grid and trilinear approximation : method

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 21 / 39

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by nearest neighbor detect cross and dot product method

Bounding grid and trilinear approximation : method

Kevin Trancho

Cage-based deformations for implicit surfaces

 Cages
 Inverse position problem
 Our methods
 Future work
 Conclusion/Questions

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Bounding grid sampling and trilinear approximation by nearest neighbor detect cross and dot product method

Bounding grid nearest neighbor : benchmark marching cubes

Implicit blob sphere deformed by cage (12 vertices, 20 faces) :

Kd-tree and sampling update time : $2.1 \cdot 10^7 ns(21ms)$ in average.

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 22 / 39
Cages
 Inverse position problem
 Our methods
 Future work
 Conclusion/Questions

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Bounding grid sampling and trilinear approximation by nearest neighbor detect cross and dot product method

Bounding grid nearest neighbor : benchmark display planes

Implicit blob sphere deformed by cage (12 vertices, 20 faces) :

Kd-tree and sampling update time : $2.1 \cdot 10^7 ns(21ms)$ in average.

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 23 / 39

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by nearest neighbor detect cross and dot product method

Bounding grid nearest neighbor : robustness to deforms problem

Wearest neighbor too far from quasi-flat hexahedra and edge reversing make the method to fail in deformations too far from bind

pose.

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 24 / 39

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by tetrahedral detect with multiple equivalents

Bounding grid tetrahedral cut : method

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 25 / 39

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by tetrahedral detect with multiple equivalents

Bounding grid tetrahedral cut : method

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 25 / 39

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by tetrahedral detect with multiple equivalents

Bounding grid tetrahedral cut : method

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by tetrahedral detect with multiple equivalents

Bounding grid tetrahedral cut : method

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by tetrahedral detect with multiple equivalents

Bounding grid tetrahedral cut : more robust solution

Kevin Trancho

Our methods

Future work

Bounding grid sampling and trilinear approximation by tetrahedral detect with multiple equivalents

Bounding grid tetrahedral cut : benchmark marching cubes

Implicit blob sphere deformed by cage (12 vertices, 20 faces) :

BIH and sampling update time : $1.7 \cdot 10^7 ns(17ms)$ in average.

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 27 / 39

Our methods

Future work

Conclusion/Questions

Bounding grid sampling and trilinear approximation by tetrahedral detect with multiple equivalents

Bounding grid tetrahedral cut : benchmark display planes

Implicit blob sphere deformed by cage (12 vertices, 20 faces) :

BIH and sampling update time : $1.7 \cdot 10^7 ns(17ms)$ in average.

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 28 / 39

Cages 0000	Inverse position problem	Our methods	Future work	Conclusion/Questions
Results over	rview			

Benchmark overview

Implicit blob sphere deformed by cage (12 vertices, 20 faces) :

Method :	State of the art inspired	Bounding grid nearest neighbor	Bounding grid tetrahedral cut
Update time	$2.4\cdot 10^6 ns(2.4ms)$	$2.1 \cdot 10^7 ns(21ms)$	$1.7 \cdot 10^7 ns(17ms)$
$\begin{array}{l} \textit{Marching cubes}:\\ 16\times 16\times 16\ (2^{12})\\ 32\times 32\times 32\ (2^{15})\\ 64\times 64\times 64\ (2^{18}) \end{array}$	$\begin{array}{c} 9.24\cdot 10^8 ns(0.924s)\\ 4.6\cdot 10^9 ns(4.6s)\\ 2.65\cdot 10^{10} ns(26.5s)\end{array}$	$9.9\cdot 10^7 ns(99ms) \ 4.1\cdot 10^8 ns(410ms) \ 1.8\cdot 10^9 ns(1.8s)$	$\begin{array}{c} 8.5\cdot 10^7 ns (85ms) \\ 3.31\cdot 10^8 ns (331ms) \\ 1.37\cdot 10^9 ns (1.37s) \end{array}$
$\begin{array}{l} \textit{Display plane}:\\ 32\times32\ (2^{10})\\ 128\times128\ (2^{14})\\ 512\times512\ (2^{18}) \end{array}$	$\begin{array}{c} 1.62 \cdot 10^8 ns(162ms) \\ 2.4 \cdot 10^9 ns(2.4s) \\ 3.82 \cdot 10^{10} ns(38.2s) \end{array}$	$7.9 \cdot 10^6 ns(7.9ms) \ 8 \cdot 10^7 ns(80ms) \ 1.29 \cdot 10^9 ns(1.29s)$	$\begin{array}{c} 2.7 \cdot 10^7 ns(27ms) \\ 6 \cdot 10^7 ns(60ms) \\ 8.05 \cdot 10^8 ns(805ms) \end{array}$

Cages	Inverse	position	problem

Future work

Conclusion/Questions

Results overview

Multiple equivalent self-intersection results

Implicit blob capsule deformed by cage (26 vertices, 48 faces) :

State of the art inspired $1 \cdot 10^{11} ns(100s)$

Bounding grid nearest neighbor $1.4 \cdot 10^9 ns(1.4s)$

Bounding grid tetrahedral detection $6.93 \cdot 10^8 ns(693ms)$

Bounding grid tetrahedral multiple detection $7.17\cdot 10^8 ns(717ms)$

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 30 / 39

Multiple equivalent self-intersection results : zoom

Implicit blob capsule deformed by cage (26 vertices, 48 faces) :

21, 2019 31 / 39

Cages	Inverse	position	problem

Future work

Conclusion/Questions

Results overview

Multiple equivalent self-intersection and contact results

Implicit blob capsule deformed by cage (42 vertices, 80 faces) :

State of the art inspired $1.58 \cdot 10^{11} ns(158s)$

Bounding grid tetrahedral detection $1.75 \cdot 10^9 ns(1.75s)$

Bounding grid nearest neighbor $2.2 \cdot 10^9 ns(2.2s)$

Bounding grid tetrahedral multiple detection $1.67\cdot 10^9 ns(1.67s)$

Kevin Trancho

Cages	Inverse	position	problem

Future work

Conclusion/Questions

Results overview

Space fold-over : movie time

Space fold-over solutions overview :

Bounding grid deform

Bounding grid nearest neighbor

Bounding grid tetrahedral detection

Bounding grid tetrahedral multiple detection solving (max)

Bounding grid tetrahedral multiple detection solving (diff(max, min))

Bounding grid tetrahedral multiple and reversal detection solving (diff(space, reversed))

Cages	Inverse	position	problem

Future work ●000 Conclusion/Questions

Future work

Improve continuity of the method

Continuity for implicit skinning :

Test B-spline reconstruction for better continuity and smoothness.

Define operator between cage and field to correct compressions of the field ?

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 34 / 39

Cages 0000	Inverse position problem	Our methods	Future work ○●○○	Conclusion/Questions
Eutore work				

Test Green and Local barycentric coordinates systems

Test other barycentric coordinates system :

• Green coordinates for quasi-conformal transform in 3D.

• Local barycentric coordinates for local transform of the space.

Cages 0000	Inverse position problem	Our methods	Future work ○○●○	Conclusion/Questions
Future worl	k			

Itegration to Implicit skinning

- Add smooth deformations.
- Allow free deformations for animators.

Cages 0000	Inverse position problem	Our methods ooooooooooooooooooooooooooo	Future work 000●	Conclusion/Questions
Future wor	k			

Correct mesh self-intersection

Case : Visualize :

Self-contact Solution : contact operator

Self-intersection skinning operator

Cages 0000	Inverse position problem	Our methods 000000000000000000000000000000000000	Future work	Conclusion/Questions ●○
Conclusion				
Concl	usion			

- Cages allow smooth and fast deformations we want to use to improve the Implicit skinning method.
- We propose a flexible plugin method to solve the inverse position problem and compute deformation of an implicit field.
- We are able to catch cases of multiple equivalents in original space to propose interesting solving of the implicit field in deformed space using composition operators.

Cages 0000	Inverse position problem	Our methods ooooooooooooooooooooooooo	Future work 0000	Conclusion/Questions ○●
Questions				
Quest	cions?			

Kevin Trancho

Backup	Green	MVC gradient	CoordSpace
•			

Student backup questions :

- Did you try other barycentric coordinates system in 2D?
- Did you compute the gradient of MeanValueCoordinates in 2D?
- Did you try other method to solve your time problem?
- Can you show that barycentric coordinates through cages are linear with respect to affine transform ?

Backup	Green	MVC gradient	CoordSpace
	•00		

Green and MeanValue compare in 2d

Backup	Green	MVC gradient	CoordSpace
	000		

Green deform 2d

Backup o	Green	MVC gradient	CoordSpace

Green field 2d

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 43 / 39

CoordSpace

Using computed gradient : error

Kevin Trancho Cage-based deformations for implicit surfaces June 21, 2019 44 / 39 Backup Green o 000 MeanValueCoordinates gradient problem MVC gradient ○●○○○○○ CoordSpace

Using discrete gradient : error

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 4<u>5 / 39</u>

 Backup
 Green
 MVC gradient

 o
 ooo
 oo●oooo

 MeanValueCoordinates gradient problem
 oo●oooo

Using computed gradient : field

Backup Green

MVC gradient

CoordSpace

MeanValueCoordinates gradient problem

Using discrete gradient : field

Kevin Trancho

Backup Green 0 000 MVC gradient

CoordSpace

MeanValueCoordinates gradient problem

Using computed gradient : field without cage

Kevin Trancho

Green

MVC gradient 0000000

CoordSpace

MeanValueCoordinates gradient problem

Using discrete gradient : field without cage

Kevin Trancho

Backup	Green	MVC gradient	CoordSpace
⊙	000	000000●	
MeanValueCoordinates gradient problem			

Gradient discontinuity on edges

$$\begin{aligned} a_i &= C_i - P, \ b_i = C_{i+1} - P, \delta_i = \frac{a_i \cdot b_i}{||a_i|| ||b_i||} \\ \omega_i &= \frac{\tan\left(\frac{\delta_{i-1}}{2}\right) + \tan\left(\frac{\delta_i}{2}\right)}{||a_i||}, \ P = \frac{\sum\limits_{i \in [n]} \omega_i C_i}{\sum\limits_{i \in [n]} \omega_i} \\ \frac{\partial}{\partial \gamma} \delta_i &= \frac{\partial}{\partial \gamma} \frac{a_i \cdot b_i}{||a_i|| ||b_i||} = (a_i \cdot b_i) \frac{a_{i,\gamma} ||b_i||^2 + b_{i,\gamma} ||a_i||^2}{||a_i||^3||b_i||^3} - \frac{a_{i,\gamma} + b_{i,\gamma}}{||a_i|||b_i||} \\ \frac{\partial}{\partial \gamma} \tan\left(\frac{\delta_i}{2}\right) &= \frac{1 + \tan^2\left(\frac{\delta_i}{2}\right)}{2} \sqrt{\frac{||a_i||||b_i||}{||a_i|||b_i||}} \frac{\partial}{\partial \gamma} \delta_i \\ \frac{\partial}{\partial \gamma} \omega_i &= \frac{\left(\frac{\partial}{\partial \gamma} \tan\left(\frac{\delta_{i-1}}{2}\right) + \frac{\partial}{\partial \gamma} \tan\left(\frac{\delta_i}{2}\right)\right) ||a_i|| + \frac{a_{i,\gamma}}{||a_i||} \left(\tan\left(\frac{\delta_{i-1}}{2}\right) + \tan\left(\frac{\delta_i}{2}\right)\right)}{||a_i||^2} \\ \frac{\partial}{\partial \gamma} T(P) &= \frac{\left(\sum \frac{\partial}{\partial \gamma} \omega_i T(C_i)\right) (\sum \omega_i) - (\sum \omega_i T(C_i)) \left(\sum \frac{\partial}{\partial \gamma} \omega_i\right)}{(\sum \omega_i)^2} \end{aligned}$$

Kevin Trancho

Backup	Green	MVC gradient	CoordSpace
⊙	000	000000●	
MeanValueCoordinates gradient problem			

Gradient discontinuity on edges

$$\begin{aligned} a_i &= C_i - P, \ b_i = C_{i+1} - P, \delta_i = \frac{a_i \cdot b_i}{||a_i|| ||b_i||} \\ \omega_i &= \frac{\tan\left(\frac{\delta_{i-1}}{2}\right) + \tan\left(\frac{\delta_i}{2}\right)}{||a_i||}, \ P = \frac{\sum\limits_{i \in [n]} \omega_i C_i}{\sum\limits_{i \in [n]} \omega_i} \\ \frac{\partial}{\partial \gamma} \delta_i &= \frac{\partial}{\partial \gamma} \frac{a_i \cdot b_i}{||a_i|| ||b_i||} = (a_i \cdot b_i) \frac{a_{i,\gamma} ||b_i||^2 + b_{i,\gamma} ||a_i||^2}{||a_i||^3||b_i||^3} - \frac{a_{i,\gamma} + b_{i,\gamma}}{||a_i|||b_i||} \\ \frac{\partial}{\partial \gamma} \tan\left(\frac{\delta_i}{2}\right) &= \frac{1 + \tan^2\left(\frac{\delta_i}{2}\right)}{2} \sqrt{\frac{||a_i||||b_i||}{||a_i||||b_i||}} \frac{\partial}{\partial \gamma} \delta_i \\ \frac{\partial}{\partial \gamma} \omega_i &= \frac{\left(\frac{\partial}{\partial \gamma} \tan\left(\frac{\delta_{i-1}}{2}\right) + \frac{\partial}{\partial \gamma} \tan\left(\frac{\delta_i}{2}\right)\right) ||a_i|| + \frac{a_{i,\gamma}}{||a_i||} \left(\tan\left(\frac{\delta_{i-1}}{2}\right) + \tan\left(\frac{\delta_i}{2}\right)\right)}{||a_i||^2} \\ \frac{\partial}{\partial \gamma} T(P) &= \frac{\left(\sum \frac{\partial}{\partial \gamma} \omega_i T(C_i)\right) (\sum \omega_i) - (\sum \omega_i T(C_i)) \left(\sum \frac{\partial}{\partial \gamma} \omega_i\right)}{(\sum \omega_i)^2} \end{aligned}$$

Kevin Trancho

Backup	Green	MVC gradient	CoordSpace
⊙	000		●○○○
Gradient descent in space of coo	rdinates test		

Gradient descent in Coordinates space

Minimize
$$||\sum_{i\in[n]} \alpha_i T(C_i) - Q||^2$$
.

$$\frac{\partial}{\partial \alpha_k} || \sum_{i \in [n]} \alpha_i T(C_i) - Q ||^2 = 2T(C_k) \cdot \left(\sum_{i \in [n]} \alpha_i T(C_i) - Q \right)$$

$$\nabla ||\sum_{i \in [n]} \alpha_i T(C_i) - Q||^2 = 2^{-t} \left(T(C_1), T(C_2), \dots, T(C_n) \right) \cdot \left(\sum_{i \in [n]} \alpha_i T(C_i) - Q \right)$$

Do gradient descent.

MVC gradient

CoordSpace 0000

Gradient descent in space of coordinates test

Coordinates space gradient descent : result

Kevin Trancho

Cage-based deformations for implicit surfaces

June 21, 2019 52 / 39

Backup	Green	MVC gradient	CoordSpace
O	000		○○●○
Gradient descent in space of coord	dinates test		

Coordinates space gradient descent : benchmark display planes

Implicit blob sphere deformed by cage (12 vertices, 20 faces) :

Backup	Green	MVC gradient	CoordSpace
O	000		○○○●
Gradient descent in space of coordinates test			

Gradient descent in Coordinates space

Find $\{\mathfrak{C}_j\}_{j\in[l]}$ orthonormal basis of constraints from coordinates system. Then do gradient descent on :

$$\nabla_{\mathfrak{C}} || \sum_{i \in [n]} \alpha_i T(C_i) - Q ||^2 = \nabla || \sum_{i \in [n]} \alpha_i T(C_i) - Q ||^2 - \sum_{j \in [l]} \frac{\nabla || \sum_{i \in [n]} \alpha_i T(C_i) - Q ||^2 \cdot \mathfrak{C}_j}{\mathfrak{C}_j \cdot \mathfrak{C}_j} \mathfrak{C}_j$$

- Is constraints computation that relevant for time saving?
- Nearest neighbor's like method : no multiple equivalent solving.
- Benchmark times near to Bounding grid methods.